Disruption of mitotic spindle orientation in a yeast dynein mutant.
نویسندگان
چکیده
Dynein motor isoforms have been implicated as potential kinetochore-associated motors that power chromosome-to-pole movements during mitosis. The recent identification and sequence determination of genes encoding dynein isoforms has now permitted the in vivo analysis of dynein function in mitosis. In this report we describe the identification and mutational analysis of the gene, DHC1, encoding a dynein heavy chain isoform in Saccharomyces cerevisiae. Sequence analysis of a 9-kb genomic fragment of the DHC1 gene predicts a polypeptide highly homologous to dynein sequences characterized from sea urchin, Dictyostelium, Drosophila, and rat. Mutations in the yeast dynein gene disrupt the normal movement of the spindle into budding daughter cells but have no apparent effect on spindle assembly, spindle elongation, or chromosome segregation. Our results suggest that, in yeast, a dynein microtubule motor protein has a nonessential role in spindle assembly and chromosome movement but is involved in establishing the proper spindle orientation during cell division.
منابع مشابه
Microtubules Orient the Mitotic Spindle in Yeast through Dynein-dependent Interactions with the Cell Cortex
Proper orientation of the mitotic spindle is critical for successful cell division in budding yeast. To investigate the mechanism of spindle orientation, we used a green fluorescent protein (GFP)-tubulin fusion protein to observe microtubules in living yeast cells. GFP-tubulin is incorporated into microtubules, allowing visualization of both cytoplasmic and spindle microtubules, and does not in...
متن کاملAsymmetric recruitment of dynein to spindle poles and microtubules promotes proper spindle orientation in yeast.
The orientation of the mitotic spindle plays a key role in determining whether a polarized cell will divide symmetrically or asymmetrically. In most cell types, cytoplasmic dynein plays a critical role in spindle orientation. However, how dynein directs opposite spindle poles toward distinct and predetermined cell ends is poorly understood. Here, we show that dynein distributes preferentially t...
متن کاملDiverse mitotic functions of the cytoskeletal cross-linking protein Shortstop suggest a role in Dynein/Dynactin activity
Proper assembly and orientation of the bipolar mitotic spindle is critical to the fidelity of cell division. Mitotic precision fundamentally contributes to cell fate specification, tissue development and homeostasis, and chromosome distribution within daughter cells. Defects in these events are thought to contribute to several human diseases. The underlying mechanisms that function in spindle m...
متن کاملMicrotubule-dependent path to the cell cortex for cytoplasmic dynein in mitotic spindle orientation
During animal development, microtubules (MTs) play a major role in directing cellular and subcellular patterning, impacting cell polarization and subcellular organization, thereby affecting cell fate determination and tissue architecture. In particular, when progenitor cells divide asymmetrically along an anterior-posterior or apical-basal axis, MTs must coordinate the position of the mitotic s...
متن کاملMitotic chromosome biorientation in fission yeast is enhanced by dynein and a minus-end-directed, kinesin-like protein.
Chromosome biorientation, the attachment of sister kinetochores to sister spindle poles, is vitally important for accurate chromosome segregation. We have studied this process by following the congression of pole-proximal kinetochores and their subsequent anaphase segregation in fission yeast cells that carry deletions in any or all of this organism's minus end-directed, microtubule-dependent m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 90 21 شماره
صفحات -
تاریخ انتشار 1993